MATH 376-02 Advanced Linear Algebra Homework

Below, F is a field and V is a vector space over F.

- 1. Due 1/23 If $a \in F$, then -a is unique and a^{-1} is unique if $a \neq 0$.
- 2. **Due 1/23** For all $a \in F$, $a \cdot 0 = 0$.
- 3. Due 1/23 The additive identity 0 cannot have a multiplicative inverse in F.
- 4. Due $1/25 F^{\infty}$ is a subspace of $F^{\infty\infty}$.
- 5. Due 1/25 If E is an extension field of F, then E is a vector space over F.
- 6. Due 1/30 If $0 \in S \subseteq V$, then S is linearly dependent.
- 7. Due 1/30 If $S \subseteq T \subseteq V$ and S is linearly dependent, then T is linearly dependent.
- 8. Due 1/30 A linear transformation $T: V \to W$ is one-to-one if and only if ker $T = \{0\}$.
- 9. Due 1/30 If $T: F^n \to F^m$ is a linear transformation and $B = [T(e_1)T(e_2)\ldots T(e_n)]$, then $T = T_B$.
- 10. **Due 1/30** An $n \times n$ matrix A is invertible if and only if T_A is invertible. [Hint: the previous exercise may come in handy!]
- 11. **Due 2/13** (Lemma 1.4.4) If W_1, \ldots, W_k are subspaces of the vector space V, then they are independent if and only if $W_i \cap \left(\sum_{j \neq i} W_j\right) = \{0\}$ for each $i, 1 \leq i \leq k$.
- 12. Due 2/13 (Lemma 1.4.5) Let V be a vector space, and W_1, \ldots, W_k subspaces of V. Then $V = W_1 \bigoplus \cdots \bigoplus W_k$ if and only if for all $v \in V$ there exist unique $w_1 \in W_1, \ldots, w_k \in W_k$ such that $v = w_1 + \ldots + w_k$.
- 13. Due 2/17 (Lemma 1.5.2) Let X be an affine subspace of V parallel to the subspace U. Then for all $x \in X$, $U = \{x' x : x' \in X\}$.
- 14. **Due 2/17** (Remark 1.5.3) An affine subspace X of V is a subspace of V if and only if $0 \in X$.
- 15. Due 2/17 (Proposition 1.5.4) If $X \subseteq V$ and U is a subspace of V, then X is an affine subspace of V parallel to U if and only if there exists $x \in U$ such that X = x + U (where $x + U = \{x + u | u \in U\}$).
- 16. Due 2/17 (See Definition 1.5.12) The canonical projection is a linear transformation. (Note that you will need to show that π is well defined, too.)
- 17. Due 2/20 If $\pi: V \to V/W$ is the canonical projection, then ker $\pi = W$.

- 18. Due 3/3 If U^* is a subspace of V^* , then the annihilator of U^* is a subspace of V.
- 19. Due 3/3 A linear transformation $T: V \to W$ is surjective if and only if its cokernel is trivial.
- 20. Due 3/8 If V is a vector space and U_1 and U_2 are subspaces of V with $U_1 \subseteq U_2$, then $\operatorname{Ann}^*(U_2) \subseteq \operatorname{Ann}^*(U_1)$.
- 21. Due 3/8 (Theorem 1.6.15 (1)) Let U be a subspace of V. Then $Ann(Ann^*(U)) = U$.
- 22. Due 3/8 Let $T: V \to W$ be a linear transformation. Then $\operatorname{Ann}^*(\operatorname{Im} T) = \ker T^*$.
- 23. **Due 3/8** Let $T: V \to W$ be a linear transformation. Then Im $T = \operatorname{Ann}(\ker T^*)$.
- 24. Due 4/7 (Corollary 3.3.9 (1)) Let A be an $n \times n$ matrix over F. Then $(\operatorname{Adj}(A))A = A(\operatorname{Adj}(A)) = \det(A)I$. (Note typo in book.)
- 25. **Due 4/7** (Corollary 3.3.9 (2)) Let A be an $n \times n$ matrix over F. If A is invertible, then $A^{-1} = \frac{1}{\det(A)} \operatorname{Adj}(A)$.
- 26. Due 4/7 Let V be a finite dimensional vector space and $T: V \to V$ a linear transformation. Then det(T) is well defined (i.e., independent of the choice of basis). (See Definition 3.3.15.)
- 27. **Due 4/12** (Example 4.1.5(2)) Show that if $V = {}^r F^{\infty \infty}$ and $L : V \to V$ is left-shift, then for every $\lambda \in F$, E_{λ}^k is k-dimensional.
- 28. Due 4/26 Let X be a set, and let $T = \{A : A \subseteq X\}$. Prove that T is a topology on X. (This is the **discrete** topology.)
- 29. Due 4/26 Prove that $T = \{B_r(x) : r > 0, x \in \mathbb{R}^n\}$ is a basis for a topology on \mathbb{R}^n .

Last updated 4/21/23